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Principles and strategy of mutational signature analysis adopted in this report 
 
Conceptual principles. 

 Multiple mutational processes generate the somatic mutations present in each individual 
human cancer.  

 Each mutational process generates a particular pattern of somatic mutations known as a 
mutational signature. 

 Each mutational process may incorporate a component of DNA damage/modification, 
DNA repair and DNA replication, each of which may be part of normal or abnormal cell 
biology. Differences in any of the three components may result in a different mutational 
signature, thus, by definition, constituting a distinct mutational process.  

 Multiple mutational processes operating continuously or intermittently during the cell 
lineage from the fertilised egg to the cancer cell may contribute to the aggregate set of 
mutations found in the cancer cell. Thus, the catalogue of somatic mutations from a single 
cancer sample often includes mutations of many different mutational signatures. 
 

Aims of the study. 

 To decipher the mutational signatures present in essentially the full set of whole genome 
and exome sequenced human cancers from which data is currently available and 
subsequently to estimate the contributions of each signature to each cancer genome. 
 

Approach used. 

 Several mathematical approaches have been used to deconvolute/extract the mutational 
signatures present in a set of mutational catalogues1-11. They are all based on the premise 
that different mutational processes (and thus their signatures) contribute to different 
extents to different samples within the set.  

 Two independently developed methods based on NMF (SigProfiler and 
SignatureAnalyzer) were applied separately to the sets of mutational catalogues. By using 
two methods we aimed to provide perspective on the impact different methodologies 
can have on numbers of signatures generated, signature profiles and attributions. The 
two methods are described in detail below and the code for both is available as decribed 
in the Code Availability Statement. Results from the two methods have been compared 
(syn12177011, syn12016215). 

 Briefly, SigProfiler employs an elaboration of previously presented approaches for 
signature extraction and for attribution of mutation counts to mutational signatures in 
individual tumours2,12-14. 

 Briefly, SignatureAnalyzer employs a Bayesian variant of NMF3,4,11. This method enables 
inferences for the number of signatures through the automatic relevance determination 
technique and delivers highly interpretable and sparse representations for both signature 
profiles and attributions at a balance between data fitting and model complexity.  

https://www.synapse.org/#!Synapse:syn12177011
https://www.synapse.org/#!Synapse:syn12016215
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 The methods that SigProfiler and SignatureAnalyzer use for determining the number of 
extracted signatures are presented in the detailed descriptions of each of these methods, 
below. 

 Both methods assume that the spectra of individual tumours can be represented as linear 
combinations of signatures. Thus, if the combination of two simultaneously operating 
mutational processes were to create a signature profile that is not a linear combination 
of the two, both SigProfiler and SignatureAnalyzer would extract this as a separate 
signature. We believe this is the case for SBS20, which appears to be due to the 
simultaneous operation of POLD1 mutation and mismatch repair deficiency. 
 

Role of NMF in extraction and attribution of mutational signatures. 

 NMF is the approximate representation of a nonnegative matrix 𝑉, in this case the 
observed mutational spectra (or profiles) of a set of tumours, as the product of two 
usually smaller nonnegative matrices, 𝑊 and 𝐻, which are the signatures and the 
attributions respectively.  

 In our experience, however, calculating a single NMF is rarely sufficient to allow confident 
extraction and attribution of signatures that reflect the underlying biological mutational 
processes. There are two main reasons for this:  

o The profiles of extracted signatures can vary substantially depending on the 
tumour samples present in 𝑉. For example, this may be especially evident when 
some tumours in 𝑉 have high numbers of mutations (e.g., samples due to UV 
exposure or DNA mismatch repair deficiency), while others have low numbers. In 
situations such as this, signatures due to highly mutagenic processes sometimes 
capture mutations from other processes and also "bleed" into other signatures. 

o With multiple potentially similar signatures operating, there are multiple possible 
and reasonably accurate reconstruction solutions for each tumour, often with 
many small and/or biologically implausible contributions.  

 To address these challenges two key additional analytic features have been incorporated 
into our analyses: 

o Both SigProfiler and SignatureAnalyzer carried out multiple signature extractions 
on different subsets of tumours, and indeed, each signature extraction by 
SigProfiler entails at least 256 and, in most cases, 1024 NMFs with different 
random initial conditions. We describe below how we selected representative 
mutational signature profiles. 

o Both SigProfiler and SignatureAnalyzer developed a process of attributing 
signature activities to tumours that is separate from the process of extracting 
(discovering) the signatures. 

 The use of multiple extractions to support confidence in results: 
o SignatureAnalyzer, carried out the main extraction procedure on (1) the majority 

of the PCAWG tumours excluding certain highly mutated tumours and (2) the 
melanomas, microsatellite-instable tumours, and a single temozolomide-exposed 
tumour (syn11738314).  

o SigProfiler extracted signatures as follows (see also syn11738306): 

https://www.synapse.org/#!Synapse:syn11738314
https://www.synapse.org/#!Synapse:syn11738306
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 Separate extraction of SBS, DBS, and ID signatures from all PCAWG whole-
genomes together (the main source of the reference mutational 
signature). 

 Separate extraction of SBS, DBS, and ID signatures from PCAWG whole-
genomes with each tumour type examined by itself. 

 Extraction of SBS signatures from all non-PCAWG whole-genomes 
together. 

 Extraction of SBS signatures from non-PCAWG whole-genomes with each 
tumour type examined by itself. 

 Separate extraction of SBS, DBS and ID signatures from all TCGA exomes 
together. 

 Separate extraction of SBS signatures from TCGA exomes with each 
tumour type examined by itself. 

 Separate extraction of SBS signatures from all non-TCGA exomes together. 
 Separate extraction of SBS signatures from non-TCGA exomes with each 

tumour type examined by itself. 
 Extraction of COMPOSITE signatures from all PCAWG whole-genomes 

together. 
This allowed the extraction of signatures that were not present in the PCAWG 
tumours (e.g., SBS42, which has been attributed to haloalkane exposure and seen 
only in whole exome sequencing data). It also served as an important validation, 
as extraction of similar signatures from single tumour types and other sample sets 
supports the correctness of the signature extracted from the PCAWG samples 
(syn12016215). 

o Signature extraction from each tumour type (or from some other subset of 
cancers) separately has the advantages of:  

 Usually including fewer (and different) mutational signatures in each 
tumour type sample set than in the set of all cancers together and thus 
fewer (and different) opportunities for inter-signature interference.   

 Allowing multiple independent opportunities for extraction of a signature 
that is present in multiple tumour types, and thus of obtaining 
validation/confirmation of the signature’s existence and profile. 

 Allowing extraction of a signature that may (for a number of reasons) fail 
to be extracted in analysis of all tumour types together. 

 Providing primary evidence for the existence of the signature in each 
tumour type.  

 Allowing separation of highly mutated cancer types/samples from cancer 
types/samples with low mutation burdens. 

o Signature extraction from multiple  tumour types together has the advantages of: 
 Usually including more samples with a particular signature than in each 

individual cancer type and thus being better powered to separate a 
signature from other partially correlated signatures and/or from 
signatures with similar profiles.  

https://www.synapse.org/#!Synapse:syn12016215
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 Providing a single profile for a signature rather than the multiple slightly 
different profiles which emerge from extraction of each tumour type 
separately. 

 The profiles of the mutational signatures extracted from cancer are highly variable. They 
range from some that have contributions from mutations of all subtypes in the mutation 
classification (“flat” or “featureless” signatures, e.g., SBS5 and SBS40) to others that are 
essentially defined by mutations at only one (or a small number) of the mutation subtypes 
(e.g., signatures SBS2, SBS13, SBS10a and SBS10b). There appears to be less concordance 
between the results of SigProfiler and SignatureAnalyzer for flat signatures than for 
signatures with distinct features indicating that generally, these may be more difficult to 
accurately extract and distinguish from each other. However, there is experimental 
support for the existence of SBS5 and SBS315,16. 

 We represented each signature as a single reference. This selection of a single reference 
signature does not exclude the possibility that signature profiles may show nuances and 
further complexity and may vary in different contexts (e.g., in different tissues). The 
rationale for selecting a single reference signature was the view that this would be a level 
of granularity useful to most researchers. For those with specialised interests in particular 
mutational processes and their components, we also provided the signatures extracted 
from individual tumour types, comprising PCAWG and non-PCAWG genomes and exomes 
(syn12025142). 

 Attribution of signatures to cancer samples: 
o The reference signatures from SigProfiler and SignatureAnalyzer were used to 

estimate the number of mutations due to each signature in each tumour 
(syn11804065). 

o SigProfiler and SignatureAnalyzer differ in their approaches for attributing 
signatures. However, both incorporate a set of rules based on prior knowledge 
and biological plausibility, and incorporate techniques to encourage sparsity in the 
number of signatures attributed to a given tumour. 

o Sparsity (limiting the numbers of signatures and limiting the numbers of 
signatures attributed to each cancer sample) is an important concept and feature 
of both SigProfiler and SignatureAnalyzer (both in signature extraction and 
attribution). Our prior beliefs are that (i) there is a limited set of significantly 
contributing mutational processes (and hence a limited set of mutational 
signatures) operating to generate somatic mutations across all cancers and (ii) that 
a limited set of mutational processes contribute to individual cancer genomes (as 
opposed to all mutational signatures contributing to all samples). Our aim in 
discovering mutational signatures is to reflect the underlying biological processes 
and to attribute them appropriately. It is not a mathematical exercise in which the 
main objective and priority is to minimize the difference between 𝑊 × 𝐻 and the 
original spectra in 𝑉. Indeed, if the latter was the main aim, for 96 mutation classes 
a set of 96 signatures each constituted entirely of mutations in just one class (and 
therefore ignoring sparsity), will always provide error free reconstruction but will 
provide absolutely no information about underlying mutational processes. 
 

https://www.synapse.org/#!Synapse:syn12025142
https://www.synapse.org/#!Synapse:syn11804065
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Presentation of the results of signature extraction and attribution from SigProfiler and 
SignatureAnalyzer. 

 The results (signatures and attributions) of the two methods have been presented 
separately. We have done this in preference to combining them. We have handled the 
two outputs in this way because we believe that this provides a simpler conceptual and 
technical basis on which the research community can understand the results, can employ 
the methods in future and can compare results with those shown in this paper. We also 
do not have a basis for believing that a combined/averaged/overlapping single result set 
is a better representation of the natural truth than either of the two result sets 
individually and do not have a well-founded and simple technical approach for combining 
them. We have, however, provided comparisons of the outputs. 

 For brevity and for continuity with previous publications, the results from SigProfiler, a 
further elaborated version of previously described approaches2,12-14 that generated the 
30 signatures previously shown in COSMICv217, are shown in the main manuscript, and 
the results from SignatureAnalyzer in supplementary data (syn11738307). 

 Nomenclature of signatures is based on and extends the nomenclature previously used in 
COSMIC (COSMICv2, https://cancer.sanger.ac.uk/cosmic/signatures_v2)17. 

 Both methods analysed each mutation type (SBSs, DBSs and IDs) separately and also 
together as a composite signature. In future, however, SigProfiler will usually use the 
separately extracted single base substitution, indel and doublet base substitution 
signatures as its standard. This generally facilitates portability, and comparison of 
signature profiles with those from a variety of sample sets including targeted sequences, 
exomes etc.  

 SBS signatures reported in Supplementary Data include possible artefacts 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/ and see below). 
 

Quality control: annotating signatures as likely real or a possible artefact 

 Sequencing artefacts and differences in analysis pipelines can also generate mutational 
signatures. We have annotated which signatures are likely real or “possible artefact”. 

 There are multiple reasons for believing a signature reflects a biological mutational 
signature rather than an artefact. 

o The input data supporting the signature seem correct: key mutational features of 
the putative signature look real in a mapped-read browser such as Integrative 
Genomics Viewer (IGV, https://software.broadinstitute.org/software/igv/), or 
characteristic mutations are experimentally confirmed in the tumour and normal 
samples. Inspection in a mapped read browser is especially important in checking 
for possible problems in potentially new signatures arising in datasets other than 
the highly scrutinized and checked PCAWG and TCGA sets. Features associated 
with experimental, mapping, or other computational artefacts include strong 
preference for the first read, very low variant allele fractions, variants in regions 
of low germ-line sequencing coverage, variants found near indels in low-
complexity regions, variants from a signature only found in one sequencing centre 
etc. 

https://www.synapse.org/#!Synapse:syn11738307
https://cancer.sanger.ac.uk/cosmic/signatures_v2
https://software.broadinstitute.org/software/igv/
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o The 96-mutation profile and additional features (e.g., strand asymmetry, 
association with replication timing), are known to result from a particular process 
in experimental systems. Examples: UV, polymerase epsilon proofreading 
deficiency, aristolochic acid and cisplatin exposure. 

o The putative signature is broadly consistent with previous biochemical knowledge 
of mutational processes (e.g., preference for G adducts in aflatoxin). 

o The putative signature dominates the spectra of some tumours (column J of 
syn12016215). 

o The putative mutational signature is consistently deciphered from multiple 
independent datasets; this indicates that the signatures is either a common 
sequencing artefact or something real. 

o The putative signature correlates with known or suspected mutational exposures, 
endogenous processes, or repair defects, especially if some of those 
exposures/processes/repair defects result in overwhelming mutational spectra. 
Examples: melanoma / fair skin / UV exposure, POLE mutations, MMR deficiency 
and APOBEC germ line variants. 

o The putative signature correlates with other clinical characteristics, such as age at 
diagnosis (examples SBS1 and SBS5) or tobacco smoking (SBS4). 

o The mutational signature exhibits a strong transcriptional strand bias; it is hard to 
imagine an artefact with transcriptional strand bias. 

o The putative signature shows association with other genomic features, such as 
microindels in homopolymers, replication strand, replication timing, or 
nucleosome occupancy. 
 

Cancer sample sets on which different analyses have been conducted. 

 Because PCAWG genomes are of high quality with respect to the calling of all mutation 
types, all our analyses (all types of signature extraction and all types of signature 
attribution) have been conducted on the 2,780 PCAWG genomes. 

 SigProfiler also extracted SBS signatures from the non-PCAWG whole genomes, TCGA 
exomes, and non-TCGA exomes and attributed SBS signatures to them. 

 ID signatures have been extracted and attributed to PCAWG genomes and to a subset of 
TCGA exomes with large numbers of indels (the latter SigProfiler only). We have not done 
this for indels in non-PCAWG whole genome sequences and non-TCGA exomes (i) because 
of the unknown and variable accuracy and standardisation of indel mutation calls from 
different groups generating the data, (ii) because in some cases no indel calls were 
provided by the data generator and (iii) because for exomes in most cases there would be 
very few mutations. 

 DBS signatures have been extracted and attributed to PCAWG genomes and TCGA 
exomes only. We have not done this for the other categories of samples because of the 
unknown and variable quality of the mutation calls, the possibility that filters introduced 
for quality control might deliberately exclude doublet mutations, and the small numbers 
of doublet mutations in exomes.  

 Consistent with the above, composite mutational signatures have only been extracted 
and attributed for PCAWG genomes. 

https://www.synapse.org/#!Synapse:syn12016215
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 See also syn11738306. 
 
Splitting of mutational signatures. 

 Certain previously existing single signatures have split into multiple constituent signatures 
in this analysis. This is likely due to the existence of multiple, partially correlated 
mutational processes with the same initiating factor (for example, UV exposure) but 
subsequent differences in underlying mechanisms which differ in intensity in different 
tissues or other contexts. A previous example of this for which we have allocated different 
signature numbers is the split of the usually co-occurring but independently varying 
consequences of APOBEC mutagenesis into signatures SBS2 and SBS13 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). 

 Depending on the extent of correlation of the two signatures, and the available 
dataset/statistical power such signatures may manifest as a single signature, overlapping 
partially separated signatures or as two separate signatures. 

 We are aware that splitting of signatures can also be a mathematical artefact. However, 
we have used multiple extractions to confirm and validate signature splits and applied the 
principle of sparsity to limit artefactual splits 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). 

 In extraction of UV-related signatures we observed the following: 

o Partial splitting for "local analysis" of PCAWG melanoma in isolation 

(syn11853305; SBS7c & SBS7d are mixed). 

o Partial splitting for "local analysis" of non-PCAWG WGS melanomas 

(syn11853532; SBS7c is almost completely separated but still mixed with 

SBS7d). 

o Complete separation of SBS7a,b,c,d in the global analysis PCAWG WGS 

melanomas (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/) 

o Complete separation of SBS7a,b,c,d in the global analysis of non-PCAWG 

WGS melanomas (syn20710496). 

o Also, as an additional note, there are 157,012 T>A mutations at TTT 

(essentially SBS7c) and 128,411 T>C mutations at GTT (essentially SBS7d) 

across all of PCAWG. Thus, SBS7c and SBS7d are needed to explain these 

mutations.  

o Although SBS7a,b,c,d  are correlated, the mutations due to each of these 

signatures are present in varying proportions across tumours, and this is the 

reason that SigProfiler and SignatureAnalyzer separate them. 

 
Better separation compared to COSMICv2 signatures 
As described in the manuscript, all mutational signatures previously reported on COSMIC were 
confirmed in the new set of analyses with median cosine similarity of 0.95. However, the 
separation between the COSMICv2 mutational signatures 

https://www.synapse.org/#!Synapse:syn11738306
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
https://www.synapse.org/#!Synapse:syn11853305
https://www.synapse.org/#!Synapse:syn11853532
https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
https://www.synapse.org/#!Synapse:syn20710496
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(https://cancer.sanger.ac.uk/cosmic/signatures_v2) is much worse compared to the separation 
between the PCAWG mutational signatures. One can easily discern this by visual examination of 
signature profiles. For example, in COSMICv2, signatures 5 and 16 have a cosine similarity of 0.90, 
thus making them hard to distinguish from one another. In contrast, in the current PCAWG 
analysis, SBS5 and SBS16 have a cosine similarity of 0.65. This allows unambiguously assigning 
SBS5 and SBS16 to different samples. In the PCAWG analysis, the larger number of samples has 
allowed reducing the bleeding between signatures and has given more unique and easily 
distinguishable signatures. One can evaluate the overall separation of a set of mutational 
signatures by examining the distribution of cosine similarities between the signatures in the set. 
The COSMICv2 signatures have a median cosine similarity between the signatures in COSMICv2 
of 0.238. In contrast, the PCAWG signatures have a much lower median cosine similarity between 
the signatures in PCAWG of 0.098. This 2-fold reduction in similarity is highly statistically 
significant (p-value: 9.1 x 10-25) and indicates a better separation between the signatures in the 
current PCAWG analysis. 
 
Correlations of mutational signature activity with age 
Prior to evaluating the association between age and the activity of a mutational signatures, all 
outliers for both age and numbers of mutations attributed to a signature in a cancer type were 
removed from the data. Outlier was defined as any value outside three standard deviations from 
the mean value. A robust linear regression model that estimates the slope of the line and whether 
this slope is significantly different from zero (F-test; p-value<0.05) was performed using the 
MATLAB function robustfit (https://www.mathworks.com/help/stats/robustfit.html) with 
default parameters. The p-values yielded from the F-tests were corrected using the Benjamini-
Hochberg procedure for false discovery rate. Results are at syn12030687 and syn20317940. 
 
SigProfiler overview 
SigProfiler incorporates two distinct steps for identification of mutational signatures based on 
the previously described methodology2,12-14. The first step, SigProfilerExtraction, encompasses a 
hierarchical de novo extraction of mutational signatures based on somatic mutations and their 
immediate sequence context, while the second step, SigProfilerAttribution, focuses on accurately 
estimating the number of somatic mutations associated with each extracted mutational 
signature in each sample.  
 
SigProfilerExtraction 
(Note: This phase is termed "SigProfiler" in the MATLAB code and "SigProfilerExtractor" in the 
Python code, and we refer to them collectively as SigProfiler below and elsewhere). The 
hierarchical de novo extraction approach is an extension of our previous framework for analysis 
of mutational signatures (Extended Data Figure 8a)2,13. Briefly, for a given set of mutational 
catalogues, the previously developed algorithm was hierarchically applied to an input 
matrix 𝑀 ∈  ℝ+

𝐾×𝐺  of non-negative integers with dimension K × G, where K is the number of 
mutation types and G is the number of samples. This previously described algorithm deciphers a 
minimal set of mutational signatures that optimally explains the proportion of each mutation 
type and estimates the contribution of each signature to each sample. The algorithm uses 
multiple NMFs to identify the matrix of mutational signatures, 𝑃 ∈  ℝ+

𝐾×𝑁, and the matrix of the 

https://cancer.sanger.ac.uk/cosmic/signatures_v2
file:///C:/Users/steve/Dropbox%20(CompBio)/PCAWG7-draft/nature-submission/2019-09-11-revisions/PCAWG7-paper-after-upload-2019-10-10/syn12030687
https://www.synapse.org/#!Synapse:syn20317940
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activities of these signatures, 𝐸 ∈  ℝ+
𝑁×𝐺, as previously described2. The unknown number of 

signatures, N, is determined by semi-automated assessment of the stability and accuracy of 
solutions for a range of values for N, (Extended Data Figure 8a). Briefly, for each value of N, 
SigProfiler carries out a decomposition with multiple bootstrapped NMFs. For a given N, the 
multiple solutions are clustered using a modified version of k-means clustering (see Ref. 2 for 
details). The clustering is used to evaluate the stability of decomposition, i.e., whether solutions 
from different initial conditions converge to similar signatures, and the mean reconstruction 
error, i.e., the ability of each solution to explain the original data. The python version of 
SigProfiler proposes a value of N with a low mean reconstruction error and high stability. Both 
the MATLAB and python versions present solutions for the full range of Ns for human review for 
possible failure to split or over splitting of signatures in light of considerations presented in this 
Supplementary Note under the headings "Role of NMF in extraction and attribution of mutational 
signatures" and "Quality control: annotating signatures as likely real or a possible artefact" and 
in light of consistency of signatures extracted from different sets of tumours.  
 
The identification of M and P is done by minimizing the generalized Kullback-Leibler divergence: 
 

min
𝑃∈ℝ+

(𝐾,𝑁)
𝐸∈ℝ+

(𝑁,𝐺)
∑(𝑀𝑖𝑗𝑙𝑜𝑔

𝑀𝑖𝑗

�̂�𝑖𝑗𝑖𝑗

− 𝑀𝑖𝑗 + �̂�𝑖𝑗), 

 

where 𝑀 ̂  ∈  ℝ+
𝐾×𝐺  is the unnormalized approximation of 𝑀, i.e., 𝑀 ̂ = 𝑃 ×  𝐸. The framework 

is applied hierarchically to increase its ability to find mutational signatures generating few 
mutations or present in few samples. In detail, after application to a matrix M containing the 
original samples, the accuracy of reconstructing the mutational spectrum of each sample with 
the extracted mutational signatures is evaluated. Samples that are well-reconstructed are 
removed, after which the framework is applied to the remaining sub-matrix of M. 
 
Transcriptional strand bias associated with mutational signatures was assessed by applying 
SigProfilerExtraction to catalogues of in-transcript mutations that capture strand information 
(192 mutations classes, syn12026195). These 192-class signatures were collapsed to strand-
invariant 96-class signatures and compared to the signatures extracted from the 96-class data, 
revealing very high cosine similarities (median 0.90, column F in syn12016215). 
 
SigProfilerAttribution (single sample attribution) 
(Note: This phase is termed SigProfilerSingleSample in both the MATLAB and Python code). After 
signatures are discovered by SigProfilerExtraction, another procedure, SigProfilerAttribution, 
estimates their contributions to individual samples. For each examined sample, 𝐶 ∈  ℝ+

𝐾×1, the 
estimation algorithm involves finding the minimum of the Frobenius norm of a constrained 
function (see below for constraints) for a set of vectors 𝑆𝑖=1..𝑞 ∈  Q, where Q is a (not necessarily 

proper) subset of the set of mutational signatures, P, ie, Q ⊆ P. 
 

https://www.synapse.org/#!Synapse:syn12026195
https://www.synapse.org/#!Synapse:syn12016215
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𝑚𝑖𝑛 ‖ 𝐶 −  ∑(𝑆𝑟
⃗⃗ ⃗⃗ × 𝐸𝑟)

𝑞

𝑟=1

‖

𝐹

2

                                                                (1) 

 

In equation (1), 𝐶 and each 𝑆𝑟
⃗⃗ ⃗⃗  are vectors of K nonnegative components reflecting, respectively, 

the mutational spectrum of a sample and the r-th reference mutational signature. All mutational 

signatures, 𝑆𝑟
⃗⃗ ⃗⃗ , were identified in the SigProfilerExtraction step. Each 𝐸𝑟 is unknown scalar 

reflecting the number of mutations contributed by signature 𝑆𝑟
⃗⃗ ⃗⃗  in the mutational spectrum 𝐶. 

The minimization of equation (1) is always performed under two additional constraints: (i) 𝐸𝑟 ≥

0 and (ii) ‖𝐶 ‖
1

≥ 𝐸𝑟; The constrained minimization of equation (1) is performed using a 

nonlinear convex optimization programming solver using the interior-point algorithm18. 
 
SigProfilerAttribution follows a multistep process, wherein equation (1) is minimized multiple 
times with additional constraints (Extended Data Figure 8b).  
 
In the first phase, the subset Q contains all signatures that were found by SigProfilerExtraction in 
the same cancer type as the examined sample. Furthermore, signatures violating biologically 
meaningful constraints based on transcriptional strand bias and/or total number of somatic 

mutations are excluded from the set Q (syn12177009). Further, any 𝑆𝑟
⃗⃗ ⃗⃗ × 𝐸𝑟 for which the cosine 

similarity between �̂� and 𝐶 is ≤ 0.01 are sequentially removed, where �̂� = ∑ (𝑆𝑟
⃗⃗ ⃗⃗ ×  𝐸𝑟)𝑞

𝑟=1 . Let 𝑇 

be the final set of signatures attributed to the sample at the end of the first phase. 
 
In the second phase, equation (1) is minimized by sequentially allowing each signature, 

𝑆𝑟 ∈   P\Q,to be added provided that it increases the cosine similarity between �̂� and 𝐶 by >0.05. 
During this second phase, several additional biological conditions are enforced: (i) signatures 
SBS1 and SBS5 are allowed in all samples, (ii) if one connected SBS signature is found in a sample 
than another one is also allowed in the sample (e.g., if SBS17a is found in a sample then SBS17b 
is allowed in the sample). 
 
 
SignatureAnalyzer overview 
SignatureAnalyzer employs a Bayesian variant of NMF that infers the number of signatures 
through the automatic relevance determination technique and delivers highly interpretable and 
sparse representations for both signature profiles and attributions that strike a balance between 
data fitting and model complexity. Please see references 3,4,11 for more details.  
 
SignatureAnalyzer signature extraction 
In 2,780 PCAWG samples, we applied a two-step signature extraction strategy using 1536 penta-
nucleotide contexts for SBSs, 83 ID features, and 78 DBS features. In addition to separate 
extraction of SBS, ID, and DBS signatures, we performed a "COMPOSITE" signature extraction 
based on all 1697 features (1536 SBS + 78 DBS + 83 ID). For SBSs, the 1536 SBS COMPOSITE 
signatures are preferred, and for DBSs and IDs, the separately extracted signatures are preferred. 

https://www.synapse.org/#!Synapse:syn12177009
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In step 1 of the two-step extraction process, global signature extraction was performed for the 
low mutation burden samples (n = 2,624). These excluded hyper-mutated tumours: those with 
putative polymerase epsilon (POLE) defects or mismatch repair defects (microsatellite instable 
tumours - MSI), skin tumours (which had intense UV mutagenesis), and one tumour with 
temozolomide (TMZ) exposure. Because SignatureAnalyzer's underlying algorithm performs a 
stochastic search, different runs can produce different results. In step 1 we ran SignatureAnalyzer 
10 times and selected the solution with the highest posterior probability. In step 2, additional 
signatures unique to hyper-mutated samples were extracted (again selecting the highest 
posterior probability over 10 runs), while allowing all signatures found in the low mutation 
burden-samples to explain some of the spectra of hyper-mutated samples. This approach was 
designed to minimize a well-known "signature bleeding" effect or a bias of hyper- or ultra-
mutated samples on the signature extraction. In addition, this approach provided information 
about which signatures are unique to the hyper-mutated samples which is later used when 
attributing signatures to samples.  
 
SignatureAnalyzer signature attribution 
A similar strategy was used for signature attribution; we performed a separate attribution 
process for low- and hyper-mutated samples in all COMPOSITE, SBS, DBS, and ID signatures. For 
downstream analyses, we preferred to use the COMPOSITE attributions for SBSs and the 
separately calculated attributions for DBSs and IDs. Signature attribution in low-mutation burden 
samples was performed separately in each tumour type (e.g., Biliary-AdenoCA, Bladder-TCC, 
Bone-Osteosarc, etc.). Attribution was also performed separately in the combined MSI (n=39), 
POLE (n=9), skin melanoma (n=107), and TMZ-exposed samples (syn11738314). In both groups, 
signature availability (i.e., which signatures were active or not) was primarily inferred through 
the automatic relevance determination process applied to the activity matrix H only, while fixing 
the signature matrix, W. The attribution in low-mutation burden samples was performed using 
only signatures found in the step 1 of the signature extraction. Two additional rules were applied 
in SBS signature attribution to enforce biological plausibility and minimize a signature bleeding: 
(i) allow signature SBS4 (smoking signature) only in lung and head and neck cases; (ii) allow 
signature SBS11 (TMZ signature) in a single GBM sample. This was enforced by introducing a 
binary, signature-by-sample, signature indicator matrix Z (1 - allowed and 0 - not allowed), which 
was multiplied by the H matrix in every multiplication update of H. No additional rules were 
applied to ID or DBS signature attributions, except that signatures found in hyper-mutated 
samples were not allowed in low-mutation burden samples. 
 
 
Tests on Synthetic Data 
Our goal was to evaluate SignatureAnalyzer (SA) and SigProfiler (SP) on realistic synthetic data. 
We operationally defined "realistic" as corresponding to either SA's or SP's analysis of the PCAWG 
genome data. SA’s reference signature profiles were based on “COMPOSITE” signatures, 
consisting of 1536 strand-agnostic single base substitutions (SBSs) in pentanucleotide context, 78 
doublet base substitutions and 83 types of small insertions and deletions, for a total of 1,697 
mutation types. SP’s reference analysis was based on strand-agnostic single base substitutions in 
the context of one 5’ and one 3’ base; we term this “SBS96” data. For each test, we generated 

https://www.synapse.org/#!Synapse:syn11738314
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two sets of "realistic" data: SP-realistic, based on SP's reference signatures and attributions, and 
SA-realistic, based on SA's reference signatures and attributions, as well as two other types of 
data that involved using SA profiles with SP attributions and vice versa.  
  
Generating synthetic data – overview. For tests (i) through (x) below, Synthetic data for sets of 
synthetic tumours of a given cancer type, t, were generated based on three parameters that were 
in turn based on the observed statistics for each signature, s, in cancer type t: 
  
π, the proportion of tumours of cancer type t with signature s 
  
μ, the mean of log10 of the number of s mutations across those tumours of type t that have 
signature s 
  
σ, the standard deviation of log10 of the numbers of s mutations across those t tumours that have 
s. 
 
To generate synthetic data, 

(i) the proportion of tumours affected by s was drawn from the binomial distribution based on π, 

(ii) the number of mutations due to s in an affected tumour was drawn from a normal distribution 
based on μ and σ.  

The code used to generate the synthetic data and summarize SignatureAnalyzer and SigProfiler 
results is open-source and freely available as the SynSig package: 
https://github.com/steverozen/SynSig/tree/v0.2.0. The results are at syn18497223. 

 
Description of each suite of synthetic data sets 
  
i. Synthetic pancreatic adenocarcinoma (1,000 spectra). 
 
ii. 2,700 synthetic whole-genome mutational spectra – 300 spectra from each of 9 cancer types. 
These spectra consist of 300 synthetic spectra from each of the following cancer types: bladder 
transitional cell carcinoma, oesophageal adenocarcinoma, breast adenocarcinoma, lung 
squamous cell carcinoma, renal cell carcinoma, ovarian adenocarcinoma, osteosarcoma, cervical 
adenocarcinoma, and stomach adenocarcinoma. 
 
iii. Mutational spectra generated from combinations of flat, relatively featureless mutational 
signatures  --  version 1, 1000 synthetic tumours comprised of 500 synthetic Kidney-RCCs (high 
prevalence and mutation load from SBS5 and SBS40 signatures) and 500 synthetic ovarian 
adenocarcinomas (high prevalence of and mutation load from SBS3). This data set embodies 
tumours with high prevalence of the main flat signatures, SBS3, SBS5, and SBS40, in a realistic 
context. 
 

https://github.com/steverozen/SynSig/tree/v0.2.0
https://github.com/steverozen/SynSig/tree/v0.2.0
https://www.synapse.org/#!Synapse:syn18497223
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iv. Mutational spectra generated from combinations of flat, relatively featureless mutational 
signatures --  version 2, 1000 synthetic spectra all constructed entirely from SBS3, SBS5, and 
SBS40, using mutational loads modelled on kidney-RCC (SBS5 and SBS40) and ovarian 
adenocarcinoma (SBS3). Most synthetic spectra have contributions from all three signatures. 
 
v. Mutational spectra generated from signatures with overlapping and potentially 
interfering profiles - version 1.  500 synthetic bladder transitional cell carcinomas (high in SBS2 
and SBS13) and 500 synthetic skin melanomas (high in SBS7a,b,c,d). The potential interference is 
between SBS2 (mainly C > T) and SBS7a,b (mainly C > T). 
 
vi. Mutational spectra generated from signatures with overlapping and potentially 
interfering profiles - version 2. 1000 synthetic tumours composed from SBS2 and 
SBS7a,b.  Mutational load distributions were drawn from bladder transitional cell carcinoma 
(SBS2) and skin melanoma (SBS7a,b).  Most spectra contain both signatures.  The potential 
interference is between SBS2 (mainly C > T) and SBS7a,b (mainly C > T). 
 
vii. Mutational spectra generated from combinations of signatures conferring high and low 
mutation burdens. Based on 500 synthetic non-hypermutated tumours (parameters for SBS1 and 
SBS5 estimated from colorectal and uterine adenocarcinomas) and 500 hyper-mutated tumours 
(parameters for SBS26 and SBS44 estimated from hypermutated colorectal and uterine 
adenocarcinomas). High and low mutation burden tumours are segregated for SignatureAnalyzer 
(which analyses low mutation burden tumours first, then high-burden tumours). SigProfiler 
analyses all tumours together. 
  
viii. A set of 30 random 96-feature mutational signature profiles and a set of 30 random 1697-
feature signature profiles (mimicking COMPOSITE signatures, which have 1697 mutation 
types).  Each of these are used in two types of exposures, one with more (mean ~15.6) signatures 
per tumour and one with fewer (mean ~4) signatures per tumour. 
 
ix. 2,700 whole-exome mutational spectra consisting of 300 synthetic spectra from each of 9 
different cancer types. This test data set was generated from test ii by reducing the number of 
mutations of each type by 0.013 (approximately ratio of mutation counts between whole exome 
and whole genome mutational spectra). 
 
Summary of findings: Both SA and SP extracted substantially fewer signatures in this test than in 
test ii. In particular: 
  
SA: SA extracted only 18 signatures from the SA-realistic whole-exome data in this suite, 
compared to the 40 signatures it extracted from the corresponding whole-genome synthetic data 
in test ii and compared to the 39 ground-truth signatures in the synthetic spectra. The average 
cosine similarity between ground-truth and extracted signatures for the synthetic exome data 
was 0.863, compared to 0.968 for the signatures extracted from the whole-genome spectra in 
test ii. 
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SP: SP extracted only 8 signatures from the SP-realistic whole-exome data in this suite, compared 
to the 19 it extracted from the whole-genome data in test ii and the 21 ground-truth signatures 
in the synthetic spectra. The average cosine similarity between ground-truth and extracted 
signatures for the synthetic exome data was 0.825, compared to 0.965 for the signatures 
extracted from the whole-genome spectra in test ii. 
  
x. 1,350 synthetic whole-genome mutational spectra: 150 spectra from each of 9 cancer types. 
This test data set consisted of every other tumour from test ii. 
 
Summary of findings: On the SA-realistic synthetic data, SA extracted fewer signatures in this data 
set than in test ii, and in fact the number of signatures extracted was closer to the ground truth 
and the cosine similarities were there higher. SA over-split in the corresponding set of 2,700 
tumours, and we speculate that SA’s tendency to over-split signatures is partly dependent on the 
number of input spectra, with the result that extraction on 1,350 led to less over-splitting. SP 
extracted fewer signatures on this data set than on test ii. In particular: 
  
SA: SA extracted 38 signatures from the SA-realistic data in this suite, compared to the 40 
signatures it extracted from the 2,700 whole-genome spectra in test ii and compared to the 39 
ground-truth signatures. The average cosine similarity between ground-truth and extracted 
signatures for 1,350 genomes was 0.979 compared to 0.968 for the signatures extracted from 
the 2,700 whole-genome spectra in test ii. 
  
SP: SP extracted 16 signatures from the SP-realistic data in this suite, compared to the 19 
signatures it extracted from the 2,700 whole-genome spectra in test ii and the 21 ground-truth 
signatures. The average cosine similarity between ground-truth and extracted signatures for the 
1,350 spectra was 0.939 compared to 0.965 for the signatures extracted from the 2,700 spectra 
in test ii. 
 
xi. Extraction of signatures from exome subsets of PCAWG mutational spectra. Our objective 
was to further test whether availability of mutations from whole-genome mutational spectra, as 
opposed to whole-exome spectra, enabled us to extract larger numbers of more accurate 
mutational signature profiles.  In this test, we extracted signatures from mutational spectra that 
were based on only the exome regions of the actual PCAWG tumours (rather than on the purely 
synthetic data in test ix). We next summarize our findings for each of the SBS, DBS, and ID 
mutational signatures. 
  
xi-1 SBS signatures. SignatureAnalyzer on COMPOSITE mutational classes (1536 SBS in 
pentanucleotide context plus DBS and ID) extracted 12 mutational signature profiles from the 
whole-exome data, none of which strongly resembled any of the 58 signatures it extracted from 
the whole-genome data. However, some signatures were unions or splits of the signatures 
extracted from the whole genome data. For example, WI was a union of the APOBEC signatures 
BI_COMPOSITE_SBS2_P and BI_COMPOSITE_SBS13_P. More broadly, somewhat recognizable 
SBS portions of the signatures were combined with the DBS and ID portions of the signatures in 
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difficult-to-interpret combinations. We believe that SBS mutation counts were too low when 
spread across 1536 mutational classes to support robust mutational signature extraction. 
  
SigProfiler on 96 SBS mutational classes extracted 17 mutational signature profiles from the 
exome data, compared to 48 that it extracted from the whole-genome data. The median cosine 
similarity of the exome-extracted signature profiles to the mutational signature profiles extracted 
from the whole genome data was 0.94. An outlier was SBS-E-2, which was a union of SBS2 and 
SBS13 (which tend to co-occur). 
 
xi-2 DBS signatures. SignatureAnalyzer extracted 2 DBS signatures from the whole-exome data, 
compared to 15 DBS signatures that it extracted from the full whole genome data. One exome-
extracted signature was essentially identical to BI_DBS1 (consisting almost entirely of CC > TT 
mutations), and one somewhat similar to BI_DBS2 (mostly CC > AA) but with many other 
mutational classes in addition. 
  
SigProfiler extracted 3 DBS signatures from the whole-exome data, compared to the 11 DBS 
signatures that it extracted from the whole genome data. The exome-extracted signatures were 
good approximations of DBS1, DBS2, and DBS10 (cosine similarities 1, 0.93, and 0.98). 
 
xi-3 ID signatures. SignatureAnalyzer extracted 4 ID signatures from the whole-exome data, 
compared to 29 ID signatures extracted from the whole-genome data. It extracted close 
approximations of BI_ID1_P and BI_ID2_P with cosine similarities 0.97 and 0.94. These are 
insertions (signature W.3) and deletions (signature W.1) of T:A in poly T:A. SignatureAnalyzer 
extracted 2 additional signatures. One of these (W.4) was a version of BI_ID4_P with several 
mutational classes absent. The other (W.2) appeared to be a union of many of the remaining ID 
signatures. 
  
SigProfiler extracted 6 ID signatures from the whole-exome data, compared to the 17 ID 
signatures that it extracted from the whole genome data. Signatures ID-E-1, ID-E-2, ID-E-3, and 
ID-E-4 were good approximations of ID1, ID2, ID3, and ID4, respectively. An additional signature, 
ID-E-5, was approximately a union of ID6 and ID8. The remaining signature, ID-E-6 was a partial 
version (deletions in C homopolymers only) of ID7. 
 
Detailed Summary of Results (including links to input synthetic data sets and the signature 
profiles extracted); syn18497223 provides a table with the number of signatures extracted by 
SigProfiler and SignatureAnalyzer for each synthetic data set and the cosine similarities to the 
input ground-truth signatures. See above for overall interpretation of the results.  
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